The Cause of Vapor Lock

Vapor Lock is a problem that results from ambient temperatures, vapor pressure of the product and the installation. It is not a characteristic of a pump.

Atmospheric Pressure of 14.7 PSI (Sea Level) presses on the liquid in the tank. See Figure 1.

Vapor Pressure (the amount of pressure required to keep the product in a liquid form at $60^{\circ} \mathrm{F}$) of today's product is approximately 10 PSI . See Figure 2.

Figure 1

Figure 2

Atmospheric Pressure		
Less		
Vapor Pressure	$60^{\circ} \mathrm{F}$	
equals Working Pressure		14.7 PSI

Figure 3

The Cause of Vapor Lock

To measure a pump's suction, the Working Pressure must be converted to inches of vacuum. To do this, multiply the Working Pressure by 2. The result is the number of inches of vacuum that a pump can create before the product changes to a vapor. See Figure 4.

Figure 4

Figure 5

Figure 6

The Cause of Vapor Lock

B. It takes 1 inch of vacuum by the pump to overcome the restriction of an angle check or foot valve. (Not part of the pump, but a necessary part of the installation.) See Figure 7.
C. It takes 1 inch of vacuum by the pump to overcome the restriction of 60 feet of horizontal piping from the tank to the pump. See Figure 8.

To obtain the inches of vacuum to deliver product, simply add A, B and C.
A. 9 feet of lift $\quad=6$ " of suction
B. Angle check or foot valve
$=1$ " of suction
C. 60 feet horizontal run
= 1 " of suction
TOTAL = 8" of suction

With 9.4 " of suction to work with and only 8 " of vacuum required, conditions are normal and the pump delivers product without vapor locking.

Remember this condition exits when the product is at $60^{\circ} \mathrm{F}$.

Vapor Lock Conditions

Using the same example as above, 8 " of vacuum is still required to deliver product.

With higher ambient temperatures, the vapor pressure of the product changes. As mentioned above, the Vapor Pressure of today's product is 10 PSI at $60^{\circ} \mathrm{F}$. At temperatures of $90^{\circ} \mathrm{F}$ or higher, it can go as high as 12 PSI.

Figure 7

60 feet of

 horizontal piping = 1" of vacuum.

Figure 8

Figure 9

$95^{\circ} \mathrm{F}$

Vapor pressure of product may be as high as 12 PSI.

Figure 10

The Cause of Vapor Lock

Using the same formulas as above, the Working Pressure equal Atmospheric Pressure less the Vapor Pressure.
14.7 PSI Atmospheric Pressure -12.0 PSI Vapor Pressure of the product
2.7 PSI Working Pressure

Figure 11

Multiplying the 2.7 Working Pressure by 2 equals 5.4 inches of vacuum that the pump can create before the product turns to vapor.

It still takes 8 inches of vacuum to deliver product, but with higher temperatures there is only 5.4 inches of vacuum to lift the product. The result is Vapor Lock.

As we have explained, the pump plays a very small part in

Figure 12

Figure 13

